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Survey of the Nation’s Lakes – Indiana Data Analysis 
 
INTRODUCTION 
 
In 2007, the U.S. Environmental Protection Agency (EPA), states, and tribes conducted a 
nationwide survey of the condition of the nation’s lakes.  The survey was designed to  
 
 

a) Assess the condition of the Nation’s Lakes  
b) Establish a baseline to compare future surveys for trends assessment and evaluate trends 

since the 1970’s National Eutrophication Survey Study  
c) Help build State and Tribal capacity for monitoring and assessment and promote 

collaboration across jurisdictional boundaries (EPA 2007).  
 
 
Designed to estimate the percentage of lakes that are in good, fair, or poor condition, the survey 
serves as a scientific report card on America’s lakes.  It examined ecological, water quality, and 
recreational indicators, and assessed how widespread key stressors (such as nitrogen, 
phosphorus, and acidification) are across the country. 
 
The survey was a collaborative effort that involved dozens of state environmental and natural 
resource agencies, federal agencies, universities, and other organizations.  In Indiana, the effort 
was coordinated through the Indiana Department of Environmental Management (IDEM).  Staff 
and faculty at Indiana University’s School of Public and Environmental Affairs (SPEA) 
conducted the field analysis and sampling. 
 
This report provides a statistical analysis of the water chemistry data for Indiana lakes and 
reservoirs included in the National Lakes Assessment (NLA). 
 
METHODS 
 
Lake Selection 
 
A total of 1,028 randomly-selected and 124 selected reference lakes – representing 49,546 target 
lakes in five size classes and distributed relatively across the lower 48 states –were included in 
the survey.  EPA selected the lakes from the nation’s natural and man-made freshwater lakes, 
ponds, and reservoirs (hereafter referred to as “lakes”).  Both public and private lakes were 
selected and sampled.  Lakes included in the draw had to be at least one meter deep and over ten 
acres in size. The survey did not include the Great Lakes or the Great Salt Lake.  Lakes were 
selected randomly using a statistical survey design to represent the population of lakes in their 
ecological region, or Ecoregion – the geographic area in which climate, ecological features, and 
plant and animal communities are similar. 
 
In Indiana, 21 lakes were selected in the initial draw.  An additional 29 “overdraw” lakes were 
also sampled in Indiana by selecting the next 29 lakes from the master EPA list of eligible lakes.  
Permission of the landowner was required before sampling on private lakes, and several 
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landowners denied us approval to sample. In such a situation, the next unsampled lake on the list 
was then elevated to the draw. The total of 50 Indiana lakes sampled was intended to be a large 
enough sample size to allow IDEM to statistically analyze lake conditions within Indiana.  An 
additional lake, Olin Lake, was added as a reference lake (Figure 1). 
 
Data Collection 
 
SPEA students and faculty who would collect the Indiana field data attended a three-day training 
program in Madison, Wisconsin in May 2007, prior to the start of sampling.  To insure data 
consistency, all field crews throughout the U.S. used the same sampling protocols.  Field 
protocols were documented in the “Survey of the Nation’s Lakes Field Operations Manual” 
(EPA 2007). 
 
At each lake, the point of maximum water depth (call the Index Site) was found using available 
bathymetry and boat-mounted depth meters.  Temperature, dissolved oxygen and pH profiles 
were made using a multi-parameter sonde (HydroLab Quanta HQ series).  Secchi disk 
transparency was determined using a standard Secchi disk.  Four 2-liter water samples were 
collected from the upper 2-meters of the water column using a 2-meter integrated sampler.  A 4-
liter cubitainer was filled for determination of water chemistry, a 2-liter sample was retained for 
phytoplankton determination, and the final 2-liters were available to filter water for chlorophyll a 
determination.  The water chemistry samples were stored on ice in a cooler, the chlorophyll a 
filters were stored frozen with dry ice and the phytoplankton sample was preserved with Lugol’s 
solution.  At the end of each day samples were shipped to EPA-approved laboratories for 
analysis. 
 
Additional field samples were collected for zooplankton, Microcystin toxin, sediment diatoms, 
sediment mercury, and benthic macroinvertebrates, however, these results were not available in 
time to be included in this report. 
 
Watershed Features 
 
An Online Watershed DeLineation System (OWLS), available as part of a suite of watershed 
characterization and management tools available on-line through Purdue University at: 
http://cobweb.ecn.purdue.edu/~watergen/, was used to delineate the watersheds and estimate 
watershed land use of the NLA lakes.  The program uses data from a 2007 USGS 10-meter 
digital elevation model to delineate watersheds and uses a layer from the National Landuse 
Cover Dataset (2001) for land use designation. The program could not delineate watersheds for 6 
of the 51 lakes due to very flat land around these lakes. 
 
Water Sample Analysis 
 
Data flags 
 
Water quality data were flagged for long handling time on measurements of pH (5-8 d), 
conductivity (8-11 d), gran acid-neutralizing capacity (8 d), turbidity (4 d), total organic carbon 
(15-244 d), dissolved organic carbon (15-153 d), total phosphorus (29-91 d), total nitrogen (29- 

http://cobweb.ecn.purdue.edu/~watergen/�
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Figure 1.  Location of the 51 lakes sampled in Indiana during the National Lakes Assessment. 
 
 

95 d), ammonium (34-37 d), nitrate plus nitrite (8-9 d), nitrate (94-165 d), chlorine, (97-170 d), 
SiO2 (8-9 d), sodium (181-323 d), sulfate (94-169 d), calcium (181-302 d), magnesium (181-315 
d), and potassium (181-323 d). Eighteen turbidity values were below detection limits, as were 2 
phosphorus values, 9 ammonium values, and 12 nitrate values (Appendix 1). 
 
Data analysis 
 
All flagged data were included in the analysis. Values below detection limits were not modified. 
Of the variables with measurements below detection limit, only P (with 2 measurements below 
detection levels) was used extensively in analysis. 
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To determine how the NLA data compared to the larger sample of the Clean Lakes Program, we 
used the Indiana Clean Lakes data from 2000-2005, a period which covers all the lakes generally 
sampled in the CLP. Only first visits to each lake during that period were used. In comparing 
NLA and CLP data, we use Mann-Whitney-Wilcoxon tests because, although the smallest 
sample size (n = 51) is above the rule of thumb used to suggest parametric tests (n = 30), some 
distributions were strong non-normal, suggesting, instead, a more conservative approach. In 
comparing NLA data for natural lakes and impoundments, we again used Mann-Whitney-
Wilcoxon tests, in this instance because the smaller sample size was below the rule-of-thumb 
value for parametric tests. 
 
Correlation and location tests were run using the SPSS statistical package. Comparative tests 
were run using nonparametric statistics due to the relatively small sample size of the NLA data 
set and the obviously non-normal distribution of most of the variables. Spearman rank 
correlations were used to detect monotonic, but not necessarily linear relationships among 
variables. Like the parametric Pearson correlation coefficients, Spearman rank correlation 
coefficients vary between -1 and 1; 0 values suggest no relationship between the analyzed 
variables, -1 shows a perfect, monotonic, negative relationship and 1 shows a perfect, monotonic, 
positive relationship.  
  
Cluster analysis and ordinations were used to investigate multivariate relationships in the data; 
cluster analyses were run in SPSS; ordinations were run using PC-Ord (McCune and Mefford 
2006). Multivariate normality of the data was unlikely given the lack of normality in the 
individual variables, so Bray-Curtis and nonmetric multidimensional scaling (NMDS or NMS) 
ordinations were used, which do not require multivariate normality. We used hierarchical 
clustering with Euclidean distance and average linkage as an exploratory approach. For Bray-
Curtis ordination, we used the PC-Ord default settings of Sørenson distance (also called Bray-
Curtis distance) with endpoint selection using variance-regression. Sørenson distance minimizes 
impact of outliers relative to Euclidean distance, and variance-regression minimizes impact of 
outliers relative to the original method of endpoint selection, resulting in higher likelihood of 
finding endpoints at the end of the true major axis of the data. For NMDS, we used relative 
Euclidean distance, which standardizes units, and 500 iterations, to maximize likelihood of the 
best global solution. The chosen techniques are standard for their ordination type; as our work 
was an initial exploration and the data set had no particular characteristics that suggested other 
choices, we used the common techniques.  
 
Cluster analysis looks for points that are close to each other in the data cloud, as judged by 
whatever distance measure is used. As points are joined together into clusters, distances among 
clusters are judged using the linkage technique (between the center of the clusters, the edges of 
the clusters, etc).  
 
Bray-Curtis ordination looks for the longest axis in the data cloud – the axis of greatest variation 
in the data – as judged by whatever distance measure is used and whatever endpoint selection 
method is used – and arrays the sites along that axis. Then it looks for the longest axis 
perpendicular to the first, and again arrays sites along that axis, etc. Researchers interpret an axis 
by examining the correlation of measured variables to the synthetic “variable” of the axis. 
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Particularly when used with the Sørenson distance measure, it has a reputation for producing 
readily-interpreted axes. 
 
Non-metric multidimensional scaling is a constrained ordination technique – ordinations 
constructed using one data set (here, a subset of water-quality variables) must also explain 
variation in a related data set (here, a subset of the landscape variables). NMDS is almost 
aggressively nonparametric; McCune and Grace (2002, p 125) describe it as “well suited to data 
that are nonnormal or are on arbitrary, discontinuous, or otherwise questionable scales.” NMDS 
is an ordination technique that finds new axes so that the data cloud as graphed on the new axes 
bears the strongest possible resemblance to the original data cloud in the original variable space.  
 
Of the three techniques, only NMDS includes a measure of whether the ordination performs 
better than would be expected by chance. Cluster analysis is a purely exploratory technique that 
offers no explanatory mechanisms. Bray-Curtis creates synthetic axes that can be interpreted by 
correlation to the original variables, but no measure of performance. NMDS produces synthetic 
axes that are also interpreted by correlation to the original variables, and also provides a measure 
of performance. 
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RESULTS 
 
Descriptive Statistics 
 
Descriptive statistics for the water quality variables (Table 1) and landscape variables (Table 2) 
show a number of skewed variables with medians displaced from the means. Variables with 
distributions skewed to the right tended to have one or a few unusually large values (e.g., area, 
turbidity) as can be seen in the histograms (Figure 2).  
 
The HYMAPS-OWL program was unable to correctly define the watershed around 6 lakes due 
to excessively flat topography. Agriculture was the most common land cover in the watersheds 
of the measured lakes for which watershed coverage could be determined (n = 45; Table 2). 
Forest was the next most common land cover, and only these land covers exceeded the average 
% cover of the lakes themselves. Commercial and industrial land covers were less than 1% of 
watershed area for more than half the measured lakes.  
 
 
Table 1. Descriptive statistics for lake area and water quality variables for the 50 Indiana lakes 
selected in the NLA sample and Olin Lake, a reference lake added to the sample. 
 
  Mean Median 25-ile 75-ile SD Min Max 
Area (ha) 159.71 37.50 15.19 119.58 406.67 5.10 2761.79 
pH 8.45 8.48 8.37 8.57 0.26 7.57 9.07 
Conductivity (μS/cm at 25°C) 384.3 383.9 308 465 140.0 130.6 864.6 
Gran Acid-Neutralizing Cap (μeq/L) 2640 2797 1983 3218 872 555 4682 
Turbidity (NTU) 4.68 2.70 1.50 4.99 5.89 0.42 35.5 
Water Color (PCU) 11.7 10.0 6.0 16.0 9.9 0 64.0 
Total Organic Carbon (mg/L) 7.56 7.16 4.25 8.58 4.29 2.69 27.59 
Dissolved Organic Carbon (mg/L) 6.87 6.51 4.08 8.11 3.66 2.62 25.76 
Total Phosphorus (μg/L) 26.29 17.0 8.0 34.0 29.79 2.0 170.0 
Total Nitrogen (μg/L) 826 713 501 1101 493 88 2091 
Ammonium (mg N/L) 0.030 0.021 0.015 0.028 0.044 0.003 0.315 
Nitrate + Nitrite (mg N/L) 0.078 0 0 0.007 0.273 0 1.720 
Nitrate (mg N/L) 0.087 0 0 0 0.278 0 1.739 
Chloride (mg/L) 25.38 21.85 12.19 29.12 20.76 1.64 124.4 
Sulfate (mg/L) 28.41 22.53 12.64 34.49 27.99 2.82 183.1 
Calcium (mg/L) 37.60 39.58 27.44 46.79 13.59 11.7 72.29 
Magnesium (mg/L)  15.67 16.30 11.34 19.63 6.81 3.99 42.20 
Sodium (mg/L)  13.45 9.04 5.85 15.94 12.60 1.12 72.94 
Potassium (mg/L)  2.42 2.13 1.69 2.79 1.43 0.343 9.47 
Silica (mg/L SiO2)           4.02 2.97 1.70 4.73 3.90 0.050 23.46 
Chlorophyll a (μg/L) 15.74 5.65 3.00 20.52 21.52 0.944 118.8 
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Table 2. Land cover in watersheds of measured lakes, shown as absolute (ac) and proportional 
area. Areas were determined using the HYMAPS-OWL hydrologic model. 
 
Area (ha) and % area Mean Median 25-ile 75-ile SD Min Max
Water 927             224             81         725       2,039         0 10,901        
Commercial 122             2                 0 38         570            0 3,812          
Agricultural 6,334          885             72         2,985    19,027       0 114,364      
High density urban 331             37               3           250       1,128         0 7,464          
Low density urban 681             193             33         508       1,467         0 6,935          
Grass/pasture 711             201             53         725       1,900         0 12,421        
Forest 2,802          408             96         1,147    9,114         0 46,329        
Industrial 33               0 0 13         86              0 310             
Undefined 0                 0 0 0           1                0 7                 
Total watershed area 11,941        2,965          509       7,467    27,957       0.7 135,474      
% water 16.8            11.6            4.9        23.9      15.3           0 61.3            
% commercial 1.0              0.1              0 0.5        3.1             0 20.4            
% agricultural 37.5            38.1            14.4      57.3      25.0           0 84.4            
% high density urban 3.2              1.3              0.3        4.0        4.6             0 20.6            
% low density urban 6.6              5.6              4.4        8.5        3.9             0 17.5            
% grass/pasture 9.9              8.2              2.6        13.2      9.7             0 45.5            
% forest 22.8            15.2            6.5        24.4      26.0           0 95.5            
% industrial 1.2              0 0 0.2        7.2             0 48.0             
 
Extreme Values 
 
The nature of the water quality measurements was such that unusual values tend to occur only as 
large numbers. For some variables (e.g., turbidity, ammonium sulfate, chlorophyll a), lakes with 
low values were common. For others, the measurements were bounded by zero and measures 
near zero, if not common, were not sufficiently uncommon as to make low values obviously 
unusual. The values described here are not limited by any particular statistical cut-off; the varied 
distributions of the data make such cut-offs inconsistent. Rather, examination of histograms, and 
results from multivariate analysis were used to identify extreme values (see Figure 2). 
 
Strakis and Hert Lakes were both affected by industrial activity – Strakis by a landfill and 
limestone mining (as well as agriculture), Hert by coal mining (Table 3). Rock, Fish, Cedar, 
Versailles, Bischoff, Harper, Palestine, Skinner, South Chain, and Whitewater Lakes all had 
some values associated with eutrophication (high nutrients, turbidity). Higher pH values in some 
lakes were also associated with high algal productivity (Figure 3).  Little Otter Lake is in a more 
residential setting, with some natural land. Saddle and Monroe Lakes had values associated with 
the more acidic soils of the unglaciated southern part of the state; Monroe Reservoir is also the 
largest body of water in the sample, at almost 4 times the size of the next largest lake. Olin Lake, 
added to the NLA sample to serve as a reference lake (closer to pristine conditions than most in 
the northern part of the state), has an undeveloped shoreline, but its surrounding mature forest is 
not extensive and the landscape beyond is heavily agricultural.  
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Figure 2. Distributions of water-quality values for NLA lakes. Lake names are shown for unusual 
values. 
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Figure 2 (continued). Distributions of water-quality values for NLA lakes. Lake names are 
shown for unusual values. 
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Figure 2 (continued). Distributions of water-quality values for NLA lakes. Lake names are 
shown for unusual values. 
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Figure 2 (continued). Distributions of water-quality values for NLA lakes. Lake names are 
shown for unusual values. 
 
 
 
 
 

 
 

Figure 3.  Higher chlorophyll a production results in increased pH in the Indiana NLA lakes.
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Table 3. Extreme water quality values in the NLA lakes.  

 
 

Lake County Extreme Value Units Landscape features
Strakis Marion high conductivity 864.6 μS/cm

high NH4 22.5 mg N/L
high NO3+NO2 0.75 mg N/L
high NO3 0.68 mg N/L
high Cl 124 mg/L
high SO4 96.3 mg/L
high Na 72.9 mg/L
high K 9.5 mg/L

Hert Greene high conductivity 242 μS/cm Final cut lake left from coal mining
high SO4 676 mg/L
high Mg 42.2 mg/L

Rock Kosciusko high color 64 PCU Agriculture
high gran acid-neutral cap 4,563   μeq/L
high TOC 27.59 mg/L
high DOC 25.76 mg/L
high ttl N 2          mg/L

Fish Elkhart high pH 9.07 Homes, forest, surrounded by agriculture
Cedar Lake high pH 9.03 Homes, agriculture

high turbidity 35.5 NTU
high ttl P 170 μg/L
high ttl N 2.0       mg/L
high chlorophyll a 119 μg/L

Versailles Ripley high turbidity 15.4 NTU Agriculture
high ttl P 121 μg/L
high K 5.1 mg/L

Bischoff Ripley high K 5.2 mg/L Agriculture
Harper Noble high NO3+NO2 0.54 mg N/L Campground, forest surrounded by agric
Palestine Kosciusko high silica 23.5 mg/L SiO2 Homes, forest, surrounded by agriculture
Skinner Noble high turbidity 22.1 NTU Homes, agriculture
South Chain St. Joseph high silica 12.6 mg/L SiO2 Golf course, homes, forest, ag, auto salvage
Whitewater Union high pH 9.01 Forest-park, agriculture
Little Otter Steuben high conductivity 682 μS/cm Parks and homes

high gran acid-neutral cap 4,682   μeq/L
Saddle Perry low pH 7.79 Forest on acid soils

low gran acid-neutral cap 555 μeq/L
Monroe Monroe/ large area 2,762   ha Primarily forest on acid soils

Brown/ low pH 7.81
Jackson low gran acid-neutral cap 602 μeq/L

Olin LaGrange low pH 7.57
high ttl N 2.1 mg/L
high NO3+NO2 1.72 mg N/L
high NO3 1.74 mg N/L

Landfill, limestone mine, and agricultural 
activity all in immediate vicinity

Forest, surrounded by agriculture, on acid 
soils
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EPA Water Quality Standards 
 
Values of variables measured during the NLA survey did not exceed the maximum values 
provided as guidelines for aquatic life use by IDEM (DO values were not provided and could not 
be checked). No lake exceeded the total phosphorus value of 0.3 mg/l used for Aquatic Life Use 
(see extreme value section). Similarly, no lake exceeded the NO3+NO2 value of 10 mg N/l used 
for Aquatic Life Use. 
 
Three lakes exceeded the pH value of 9 used for Aquatic Life Use (Fish and Cedar Lakes in Lake 
County, and Whitewater Lake in Union County: 9.07, 9.03, and 9.01). However, the Aquatic 
Life Use Support water quality standards given in the Indiana Department of Environmental 
Management Integrated Water Monitoring and Assessment Report (2008, Figure 8) allow pH 
values to exceed 9 if the pH values “are correlated with photosynthetic activity.” All three of the 
exceeding lakes are highly eutrophic, and the pH values are likely in response to photosynthetic 
activity and its impact on the carbonate chemistry. Thus, no lakes exceeded the pH guidance, so 
long as eutrophication can be considered. 
 
The ammonia guidelines are given for unionized NH4, which is a function of temperature and 
pH. Temperature is not in the database. The highest total ammonia reading was 0.315 mg/l at a 
pH of 8.41. Assuming a water temperature of 22°C, about 10% of the ammonia would be 
unionized, or about 0.032 mg/l. The maximum value permitted at that temperature and pH is 
0.214 mg/l, almost an order of magnitude higher. The next lowest reading is only approximately 
1/3 as high, and at a similar pH. The unionized ammonia would be similarly lower. None of the 
measurements exceeds the maximum unionized ammonia values. 
 
Comparison to CLP 
 
Comparisons between the NLA and CLP data were possible for pH, conductivity, ammonium, 
nitrate, phosphorus, and chlorophyll a. Although the histograms indicated a general similarity 
(Figure 4), some distributional differences were noticeable in the descriptive statistics (Table 4) 
and the sample size, particularly for the CLP data (n = 370-380 values, depending on the 
variable) was high. All variables tested had significantly different medians and distributions in 
the two data sets (Mann-Whitney-Wilcoxon tests and Kolmogorov Smirnov, all p < 0.01). 
Sampling dates for the two programs (Figure 5) and selected weather data for the sampling 
periods (Figure 6) are also shown.  
 
We also used epilimnetic total phosphorus data to calculate Carlson’s Trophic State Index (TSI) 
(Carlson 1977). Distributional differences are apparent as the NLA data result in a greater 
proportion of oligotrophic lakes and a lower proportion of eutrophic and hypereutrophic lakes 
than do the CLP data (Figure 7). 
 
The ratio of total nitrogen to total phosphorus (TN:TP) is often used to evaluate nutrient 
limitation in phytoplankton growth.  While the TN:TP ratio varies depending on the 
phytoplankton community present, Smith (1982) and others have generally used a 12:1 ratio as 
the break between nitrogen limitation (<12:1) and phosphorus limitation (>12:1).  Using these 
criteria, 48 NLA lakes (94%) and 334 CLP lakes (87%) were phosphorus limited. 
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Table 4. Comparison of water quality values for lakes sampled in the NLA (n = 51) and CLP (n 
= 270-280) programs. NLA data were sampled in 2007, CLP data over 2000-2005.   
 

Mean Median 25-ile 75-ile St Dev Mean Median 25-ile 75-ile St Dev

pH 8.31 8.30 8.10 8.60 0.48 8.45 8.48 8.37 8.57 0.26

Conductivity (μS/cm 25°C) 571 421 329 549 550 384 384 308 465 140

Total Phosphorus (μg/L) 51.1 39.0 24.0 65.0 48.6 26.3 17.0 8.0 34.0 29.8

Ammonium (mg N/L) 0.056 0.031 0.018 0.066 0.064 0.030 0.021 0.015 0.028 0.044

Nitrate+nitrite (mg N/L) 0.415 0.022 0.013 0.294 0.883 0.078 0.000 0.000 0.007 0.273

Chlorophyll a  (μg/L) 10 3 1 11 16 16 6 3 21 22

 

NLACLP

CLP NLA

 
Natural Lakes Compared to Others (impoundments, quarry and mine lakes, etc.) 
 
Natural lakes were more northern in their distribution (Figure 1), and had less forested area and 
more agricultural area than impoundments and other created lakes. In terms of water chemistry, 
natural lakes had higher conductivity, ANC, TOC, TN, and Ca. Other ions and nutrient-related 
measurements were also higher in natural lakes, but not significantly so (Table 5). Watersheds 
around natural lakes had significantly more agricultural area and significantly less forested area 
than watersheds around impoundments.  
 
Glacial history and geology are the primary drivers for land uses and land features within 
Indiana.  The most recent glacial era some 10,000 to 14,000 years ago covered the northern third 
of the state and left behind numerous ice-block or kettle lakes.  Earlier glaciers extended to 
central Indiana.  Glacial till in these regions is more suitable for agriculture than the thin soils in 
unglaciated southern Indiana. 
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Table 5. Mean and median water quality and watershed composition values for impoundments (n 
= 19) and natural lakes (n = 32) sampled in the NLA program. A check mark denotes a 
statistically significant difference as indicated by a Mann-Whitney-Wilcoxon result of p < 0.05. 
Differences with 0.05 < p < 0.10 are marked with a ‘b;’ all other results had p > 0.10. 
 

 
 
 
 
  

Sgn Mean Median Mean Median
pH 8.4 8.4 8.5 8.5
Conductivity (uS/cm at 25 °C) ü 346.2 330.8 413.7 429.1
Gran Acid-Neutralizing Capacity ü 2164.5 2223.3 2971.7 2925.5
Turbidity (NTU) 4.2 2.7 5.0 3.0
Total Organic Carbon (mg/L) ü 4.9 4.2 9.2 8.1
Total Phosphorus (ug/L) 28.7 16.5 25.5 17.0
Total Nitrogen N (mg/L) ü 0.65 0.48 0.95 0.76
Chloride (mg/L) 23.9 15.0 26.9 23.5
Sulfate (mg/L) 31.5 15.0 26.9 27.1
Calcium (mg/L) ü 30.1 28.2 42.6 41.1
Magnesium (mg/L) b 14.5 13.5 16.7 18.4
Potassium (mg/L) 2.7 1.8 2.3 2.3
Silica (mg/L SiO2)          2.9 2.5 4.6 3.5
CHLA 14 5 17 7
pwaterar ü 0.11 0.07 0.20 0.20
pcommar 0.02 0.00 0.01 0.00
pagarea ü 0.29 0.24 0.44 0.47
phidensar 0.03 0.01 0.03 0.02
plodensar 0.07 0.05 0.07 0.06
pgraspastar b 0.07 0.06 0.12 0.10
pforestar ü 0.38 0.23 0.12 0.09
pindustar 0.03 0.00 0.00 0.00

Impound Natural
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Figure 4. Frequencies of water-quality values for lakes sampled in the NLA (n = 51) and CLP (n 
= 270-280) programs. NLA data were sampled in 2007, CLP data over 2000-2005. In each pair, 
the Y axes are forced to be identical. 

Conductivity (µS/cm at 25°C) 

Chlorophyll a (µg/L) Total phosphorus (µg/L) 
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Figure 5. Sampling dates for 2007 NLA data and CLP data collected during 2000-2005. Julian 
date gives the day of the year (from 1 to 365) sampling occurred. 
 

 
Figure 6. Precipitation patterns during CLP and NLA sampling periods. 
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Figure 7.  Frequency of trophic state for 2007 NLA data and CLP data collected during 2000-
2005.  The Y-axes are forced to be identical.  Percentages for each treatment are shown. 
 
Correlational Analysis 
 
Lake depth was strongly correlated with lake area (rs = 0.407, p = 0.003), correlated with 
chloride (rs = 0.31, p = 0.029), and suggestively related (0.05 < p < 0.10) to total phosphorus (rs 
= -0.275), % forested area (rs = -0.279), % ag area (rs = 0.270), and latitude (rs = -0.274). 
 
Water quality variables  
 
Most of the water quality variables can be placed into one of three categories: nutrient variables 
(measurements of C, N, P, K), salts (chloride, sulfate, calcium, magnesium, sodium), and 
summary variables (pH, conductivity, gran acid neutralizing capacity, turbidity, color). Silica and 
chlorophyll a, associated with diatoms and algae, respectively, complete the list. Secchi disk 
depths were available, but were not used as several lakes could not be measured due to high 
water clarity (the disk was still visible at the bottom).    
 
The nutrient variables associated with C, N, P, and K were often strongly intercorrelated (Table 
6; e.g., total organic carbon and nitrogen with a Spearman rank correlation coefficient of 0.7). 
Although total N was in this group, as was ammonium, although to a lesser extent, nitrate, and 
nitrate plus nitrite were not strongly related to the other nutrient variables. Nitrate and nitrate 
plus nitrate were weakly correlated with ammonium and even more weakly correlated with total 
N. K was weakly correlated with several of the other nutrient variables. The summary variables 
associated with algal blooms – turbidity, water color, chlorophyll a were generally highly 
correlated with the limiting nutrient variables C, N, and P, but not with K. The nutrient variables 
had a variety of intermediate correlations with the salts, but there were no obvious patterns. 
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Table 6. Spearman rank correlations among water quality variables for the 50 NLA lakes and the 
reference lake. Light yellow shows relationships with correlation coefficients between 0.3 and 
0.5. Bright yellow shows relationships with correlation coefficients between 0.5 and 0.7. Orange 
shows relationships with correlation coefficients > 0.7 (these breakpoints are arbitrary). 
  

 

Total 
Organic 
Carbon 
(mg/L)

Dissolved 
Organic 
Carbon 
(mg/L)

Total P 
(μg/L)

Total N 
(mg/L)

NH4 (mg 
N/L)

Nitrate + 
Nitrite (mg 

N/L)
Nitrate 

(mg N/L)
Potassium 

(mg/L)

Corr Coeff 0.471 0.461 0.317 0.402 0.157 -0.054 -0.022 0.27
P <0.0005 0.001 0.024 0.003 0.27 0.709 0.879 0.056
Corr Coeff 0.297 0.358 0.019 0.431 0.394 0.289 0.241 0.798
P 0.034 0.01 0.894 0.002 0.004 0.04 0.089 <0.0005
Corr Coeff 0.383 0.457 0.138 0.395 0.344 0.161 0.126 0.695
P 0.006 0.001 0.333 0.004 0.013 0.261 0.38 <0.0005
Corr Coeff 0.485 0.401 0.691 0.579 0.296 -0.15 -0.048 0.14
P <0.0005 0.004 <0.0005 <0.0005 0.035 0.292 0.739 0.328
Corr Coeff 0.624 0.633 0.637 0.57 0.237 0.043 0.072 0.138
P <0.0005 <0.0005 <0.0005 <0.0005 0.094 0.763 0.615 0.334

Corr Coeff 1 0.969 0.416 0.7 0.46 -0.057 -0.088 0.338
P . <0.0005 0.002 <0.0005 0.001 0.692 0.537 0.015
Corr Coeff 0.969 1 0.344 0.653 0.463 -0.007 -0.03 0.329
P 0 . 0.013 <0.0005 0.001 0.961 0.832 0.019
Corr Coeff 0.416 0.344 1 0.571 0.022 -0.036 -0.052 0.471
P 0.002 0.013 . 0 0.877 0.8 0.715 <0.0005
Corr Coeff 0.7 0.653 0.571 1 0.519 0.255 0.288 0.494
P 0 0 0 . <0.0005 0.071 0.04 <0.0005
Corr Coeff 0.46 0.463 0.022 0.519 1 0.359 0.393 0.27
P 0.001 0.001 0.877 0 . 0.01 0.004 0.056
Corr Coeff -0.057 -0.007 -0.036 0.255 0.359 1 0.836 -0.02
P 0.692 0.961 0.8 0.071 0.01 . <0.0005 0.889

Nitrate (mg N/L) Corr Coeff 0.116
P 0.419

Corr Coeff 0.275 0.26 -0.02 0.365 0.335 0.167 0.235 0.402
P 0.051 0.066 0.889 0.009 0.016 0.24 0.096 0.003
Corr Coeff -0.028 0.033 -0.128 0.188 0.241 0.503 0.34 0.061
P 0.847 0.816 0.372 0.186 0.089 <0.0005 0.015 0.671
Corr Coeff 0.368 0.457 0.045 0.407 0.487 0.212 0.238 0.276
P 0.008 0.001 0.755 0.003 <0.0005 0.135 0.092 0.05
Corr Coeff 0.103 0.161 0.063 0.388 0.305 0.426 0.345 0.303
P 0.471 0.26 0.66 0.005 0.029 0.002 0.013 0.031
Corr Coeff 0.119 0.103 -0.035 0.21 0.185 0.173 0.145 0.448
P 0.404 0.472 0.808 0.14 0.195 0.226 0.31 0.001
Corr Coeff -0.077 -0.004 0.005 -0.071 0.009 0.264 0.137 -0.114
P 0.589 0.976 0.972 0.62 0.952 0.062 0.339 0.427
Corr Coeff 0.527 0.46 0.742 0.532 0.184 -0.065 -0.078 0.481
P <0.0005 0.001 <0.0005 <0.0005 0.195 0.651 0.584 <0.0005

Silica (mg/L SiO2)          

Chlorophyll a 
(µg/L)

Calcium (mg/L)

Magnesium 
(mg/L) 

Sodium (mg/L) 

NH4 (mg N/L)

Nitrate + Nitrite 
(mg N/L)

Chloride (mg/L)

Sulfate (mg/L)

Total Organic 
Carbon (mg/L)

Dissolved 
Organic Carbon 
( /L)Total P (μg/L)

Total N (mg/L)

Water Color 
(PCU)

pH

Conductivity 
(µS/cm)

Gran Acid-Neutral 
Capacity (µeq/L)

Turbidity (NTU)
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Table 6 (continued). Correlations among water quality variables for the 50 NLA lakes and the 
reference lake. Light yellow shows relationships with correlation coefficients between 0.3 and 
0.5. Bright yellow shows relationships with correlation coefficients between 0.5 and 0.7. Orange 
shows relationships with correlation coefficients > 0.7 (these breakpoints are arbitrary). 
 
 

 
 
 

 
 
 

Conductivity 
(μS/cm)

Gran Acid-
Neutralizing 

Capacity 
(μeq/L)

Turbidity 
(NTU)

Water 
Color 
(PCU)

Corr Coeff 0.162 0.078 0.453 0.34
P 0.257 0.587 0.001 0.015
Corr Coeff 1 0.835 0.19 0.244
P . 0 0.182 0.084
Corr Coeff 0.835 1 0.184 0.36
P 0 . 0.195 0.009
Corr Coeff 0.19 0.184 1 0.519
P 0.182 0.195 . 0

Gran Acid-Neutralizing 
Capacity (μeq/L)

Turbidity (NTU)

pH

Conductivity (μS/cm)

Cl   
(mg/L)

SO4 

(mg/L)
Ca 

(mg/L)
Mg 

(mg/L) 
Na 

(mg/L) 
SiO2 

(mg/L)
Chlorophyll 

a  (μg/L)
Corr Coeff 0.375 0.01 -0.058 0.27 0.406 -0.207 0.556
P 0.007 0.945 0.685 0.056 0.003 0.145 <0.0005
Corr Coeff 0.625 0.594 0.803 0.798 0.61 0.265 0.092
P <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 0.06 0.521
Corr Coeff 0.344 0.362 0.897 0.695 0.257 0.313 0.16
P 0.014 0.009 <0.0005 <0.0005 0.069 0.026 0.261
Corr Coeff 0.154 0.013 0.191 0.14 0.107 -0.049 0.86
P 0.28 0.925 0.179 0.328 0.454 0.734 <0.0005
Corr Coeff 0.126 0.044 0.343 0.138 0.034 0.16 0.606
P 0.38 0.758 0.014 0.334 0.81 0.263 <0.0005

Corr Coeff 1 0.196 0.31 0.493 0.886 -0.112 0.062
P . 0.167 0.027 <0.0005 <0.0005 0.435 0.664
Corr Coeff 0.196 1 0.47 0.684 0.238 0.443 0.007
P 0.167 . <0.0005 <0.0005 0.092 0.001 0.963
Corr Coeff 0.31 0.47 1 0.6 0.172 0.297 0.112
P 0.027 <0.0005 . <0.0005 0.226 0.034 0.432
Corr Coeff 0.493 0.684 0.6 1 0.48 0.308 0.172
P <0.0005 <0.0005 <0.0005 . <0.0005 0.028 0.228
Corr Coeff 0.886 0.238 0.172 0.48 1 -0.04 0.018
P <0.0005 0.092 0.226 <0.0005 . 0.78 0.901
Corr Coeff -0.112 0.443 0.297 0.308 -0.04 1 -0.009
P 0.435 0.001 0.034 0.028 0.78 . 0.952

Water Color (PCU)

pH

Conductivity (μS/cm)

Gran Acid-Neutralizing 
Capacity (ueq/L)

Turbidity (NTU)

SiO2 (mg/L)          

Cl (mg/L)

SO4 (mg/L)

Ca (mg/L)

Mg (mg/L) 

Na (mg/L) 
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The two summary variables associated with acidity – pH and gran acid neutralizing capacity 
were highly correlated; the two summary variables associated with water clarity – turbidity and 
color – were also fairly highly correlated (Table 6). Conductivity was strongly correlated with all 
the salts. The salts showed a number of correlations, the strongest between anion-cation pairs 
that regularly co-occur, such as sodium with chloride. 
 
Landscape Analysis 
 
The 7 major proportional terrestrial landscape categories showed several intercorrelations, 
particularly among the highly-developed land covers (Table 7). In this group, the highest 
correlations were between commercial landcover and industrial, and high-density urban 
landcover. Lower correlations occurred between low-density urban landcover and high-density 
urban and commercial landcovers and between high-density urban and industrial landcovers.  
The two open landcover types, agriculture and forest, were negatively correlated. 
 
Most of the correlations between proportional landcover and water quality variables were of 
lesser significance (Table 8). Among the stronger correlations were sodium and chloride with 
commercial and high-density landcovers, magnesium with agricultural landcover, and 
conductivity with low-density area. Among the landcover types, agricultural landcover was 
correlated with the highest number of water quality variables, including nutrient variables DOC, 
total N, and K, but not total TOC or P. Forest cover was only negatively correlated with water 
quality variables. Among the water quality variables, only total phosphorus and sulfate showed 
no significant correlations with any landscape variable. Silica showed only negative correlations 
with upland landcover types. 
 
Table 7. Spearman rank correlational analyses of proportional landscape cover variables and 
water-quality variables (n = 45 for all correlations). Light yellow shows relationships with 
correlation coefficients between 0.3 and 0.5. Bright yellow shows relationships with correlation 
coefficients between 0.5 and 0.7. Orange shows relationships with correlation coefficients > 0.7. 
 

 

% water % comm % ag % hi-d urb % lo-d urb % gr-past % forest % indust

Corr Coeff 1 0.042 -0.284 0.264 0.211 .403** -0.264 -0.092
Sig (2-t) . 0.783 0.059 0.08 0.164 0.006 0.08 0.549
Corr Coeff 0.042 1 -0.109 .765** .445** 0.29 -0.066 .719**

Sig (2-t) 0.783 . 0.477 0 0.002 0.053 0.667 0
Corr Coeff -0.284 -0.109 1 -0.011 0.16 -0.247 -.424** -0.189
Sig (2-t) 0.059 0.477 . 0.943 0.294 0.101 0.004 0.215
Corr Coeff 0.264 .765** -0.011 1 .475** 0.234 -0.28 .456**

Sig (2-t) 0.08 0 0.943 . 0.001 0.121 0.062 0.002
Corr Coeff 0.211 .445** 0.16 .475** 1 0.057 -0.129 0.23
Sig (2-t) 0.164 0.002 0.294 0.001 . 0.712 0.399 0.129
Corr Coeff .403** 0.29 -0.247 0.234 0.057 1 0.011 0.13
Sig (2-t) 0.006 0.053 0.101 0.121 0.712 . 0.94 0.393
Corr Coeff -0.264 -0.066 -.424** -0.28 -0.129 0.011 1 0.039
Sig (2-t) 0.08 0.667 0.004 0.062 0.399 0.94 . 0.801
Corr Coeff -0.092 .719** -0.189 .456** 0.23 0.13 0.039 1
Sig (2-t) 0.549 0 0.215 0.002 0.129 0.393 0.801 .

% indus-
trial

% water

% com-
mercial

% ag

% hi-dens 
urban

% lo-dens 
urban

% grass-
pasture

% forest
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Table 8.  Spearman rank correlational analyses of proportional landscape cover variables and 
water-quality variables (n = 45 for all correlations). Light yellow shows relationships with 
correlation coefficients between 0.3 and 0.5. Bright yellow shows relationships with correlation 
coefficients between 0.5 and 0.7. Orange shows relationships with correlation coefficients > 0.7. 
 
 

 
 

% water
% 

commercial % ag

% hi-
density 
urban

% low-
density 
urban

% grass 
pasture % forested

% 
industrial

Corr Coeff .145 .172 .340* .216 .204 .323* -.295* .018
Sig (2-t) .340 .257 .022 .154 .179 .030 .049 .906
Corr Coeff .082 .292 .372* .294* .547** .139 -.374* .196
Sig (2-t) .592 .051 .012 .050 .000 .362 .011 .196
Corr Coeff .107 .063 .465** .061 .382** .253 -.329* .014
Sig (2-t) .483 .680 .001 .692 .010 .093 .027 .925
Corr Coeff -.087 .397** .151 .239 .301* .304* .057 .330*

Sig (2-t) .569 .007 .322 .113 .044 .042 .710 .027
Corr Coeff -.107 .086 .317* .043 .178 .362* .038 -.074
Sig (2-t) .483 .573 .034 .778 .243 .015 .806 .630
Corr Coeff .292 .103 .276 .129 .167 .470** -.302* -.062
Sig (2-t) .052 .502 .067 .400 .272 .001 .044 .686
Corr Coeff .294 .000 .319* .039 .198 .425** -.311* -.129
Sig (2-t) .050 1.000 .033 .798 .191 .004 .038 .397
Corr Coeff -.213 .142 .253 -.002 .073 .277 .187 -.003
Sig (2-t) .160 .353 .093 .990 .633 .065 .220 .986
Corr Coeff -.036 .250 .353* .252 .095 .341* -.324* .139
Sig (2-t) .816 .098 .017 .095 .536 .022 .030 .362
Corr Coeff .221 .535** .257 .563** .491** .130 -.440** .236
Sig (2-t) .145 .000 .088 .000 .001 .395 .002 .119
Corr Coeff -.076 .063 .248 .209 .257 -.239 -.134 .242
Sig (2-t) .619 .683 .101 .168 .088 .114 .379 .110
Corr Coeff .070 .035 .374* .125 .352* .147 -.383** .026
Sig (2-t) .649 .817 .011 .412 .018 .334 .009 .863
Corr Coeff -.061 .149 .604** .253 .433** -.096 -.391** .129
Sig (2-t) .690 .328 .000 .094 .003 .532 .008 .398
Corr Coeff .196 .554** .129 .554** .466** .137 -.266 .288
Sig (2-t) .196 .000 .399 .000 .001 .369 .078 .055
Corr Coeff -.006 .411** .360* .356* .382** .255 -.211 .210
Sig (2-t) .971 .005 .015 .016 .010 .090 .164 .166
Corr Coeff -.326* -.324* .030 -.335* -.122 -.050 .296* -.090
Sig (2-t) .029 .030 .846 .025 .425 .745 .048 .557
Corr Coeff -.029 .223 .339* .172 .206 .264 .000 .067
Sig (2-t) .852 .140 .023 .257 .174 .080 .999 .660
Corr Coeff -.261 .398** .452** .255 .209 -.021 .109 .517**

Sig (2-t) .084 .007 .002 .091 .169 .893 .477 .000

Sulfate (mg/L)

Calcium (mg/L)

CHLA (μg/L)

Watershed 
area

Magnesium 
(mg/L) 

Sodium (mg/L) 

Potassium 
(mg/L) 

Silica (mg/L 
SiO2)          

pH

Conductivity

Gran Acid-Neut. 
Cap.

Total Nitrogen 
N (mg/L)

Chloride (mg/L)

Turbidity (NTU)

Water Color 
(PCU)

Total Organic 
Carbon (mg/L)

Dissolved 
Organic C

Total 
Phosphorus
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 Multivariate Analyses 
  
Multivariate analyses of the NLA data were run to explore relationships among the variables and 
among the variable sets. We avoided entering correlated variables into the analyses, as this 
distorts results. As a result, the nutrient data set was reduced to total phosphorus, total nitrogen 
and potassium; the salts variables were reduced to chloride, calcium, and sulfate; the summary 
variables were reduced to gran acid-neutralizing capacity; the proportional landscape variables 
were reduced to forest, commercial, and ag/pasture. 
 
Cluster analysis 
 
Cluster analyses are entirely exploratory. Here, we show two examples of outcomes, one from 
clustering of the water-quality variables, and one from clustering of the landcover variables. Data 
were clustered, then major clusters were analyzed to determine how they differed on the major 
variables. 
 
Cluster analysis of water-quality variables. The sample water-quality cluster used squared 
Euclidean distance and average linkage algorithms and produced 3 major clusters of lakes 
(Figure 8). Tests of group differences in water quality variables showed greatest differences 
among the cluster groups in calcium, gran acid-neutralizing capacity (Kruskal-Wallis and 
Welch’s Robust ANOVA both producing p < 0.0005). Sulfate also varied significantly using 
both parametric and nonparametric tests, whereas total N and chloride only differed significantly 
using the Kruskal-Wallis test. Given the strongly nonnormal distributions of some variables, 
aspects of assumptions for both Kruskal-Wallis and Welch’s Robust ANOVA were likely unmet 
for some tests.  
 
Cluster 1 was associated with high gran acid-neutralizing capacity, N, Ca, and SO4; lakes in this 
cluster were in the northern part of the state with the exception of one lake in Ripley County, in 
the southeast. Cluster 2 was associated with high N and intermediate gran acid-neutralizing 
capacity (ANC), Ca, and SO4; lakes in this cluster were from the northern and central parts of the 
state. Cluster 3 was associated with low alkalinity, N, Ca, and SO4; lakes in this cluster were 
widely scattered throughout the state. 
 
Cluster analysis of landcover variables.  The sample landcover cluster used squared Euclidean 
distance and average linkage algorithms and produced 4 major clusters of lakes (Figure 9). Of 
these, cluster 3 was most easily described, having high forest cover, and low ANC, P, N, and K 
(significantly so in all cases against groups 1 and 3, not consistently significantly so against 
group 4, due to sample size (3, for group 4)). Group 4 held the 3 sites with highest cover in 
grass/pasture (Figure 10), and Groups 1 and 2 had the points with 2nd highest and highest 
agricultural land cover, respectively. The highest N and P values were in group 4, rather than in 
the high-agriculture groups, but due in part to the small size of group 4, differences were not 
significant. Although the separation of clusters among landscape variables was good (Figure 10), 
the relationships of the clusters to water quality were not entirely clear.  
  



 

25 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Cluster analysis of the NLA and reference lakes (n = 51). Cluster analysis used squared 
Euclidean distance and average linkage to assess clustering of water-quality variables. The major 
clusters showing greatest similarity are outlined and numbered (see text). Lakes are identified by 
partial name and county, and type of water body (primarily natural (N) and impoundment (I)). 

1 

2 
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Figure 9. Cluster analysis (squared Euclidean distance and average linkage) using proportional 
landcover variables for agriculture, grass/pasture and commercial landcovers. Lakes are 
identified by partial name and county, and type of water body. The four major clusters are 
identified at their branch points. Two outlier lakes (Monroe and Strakis) were excluded. 

2 

1 

4 

3 

Lakes Monroe and 
Strakis excluded 
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Figure 10. Proportion of agriculture and grass/pasture landcovers for NLA lakes, shown by 
membership in clusters derived from cluster-analysis of landscape variables. Note that landcover 
proportions must sum to one, so that as cover in grass/pasture increases, cover in agricultural 
area must decrease. Points cannot fall above the dashed line, and can only approach the line if 
the landscape has no additional cover types.  
 
Bray-Curtis ordination 
 
The first axis of the Bray-Curtis ordination including all 51 NLA and reference lakes was 
strongly correlated with gran ANC and calcium (Kendall’s tau, τ (a nonparametric correlation 
coefficient similar to Spearman rank) = 0.738, 0.682) and to a lesser extent, with total N (τ = 
0.539). A Kendall’s tau value greater than 0.19 would be considered statistically significant for 
our sample size, but useful explanatory power (as with Pearson’s correlation coefficient) is 
generally at higher levels – on the order of 0.30 or higher.  
 
The analysis was rerun without calcium. Ca was highly correlated with ANC, and the inclusion 
of both variables could have contributed to the overriding effect of the pair on the analysis.  The 
first axis of the new analysis extracted 65. 3% of the original matrix; Kendall’s tau values were   
-0.735 for ANC and -0.539 for total N. Lake Monroe and Saddle Lake, both with very low ANC, 
increased the length of the axis considerably (Figure 11 – see the two points in the upper right); 
the ranking of lakes on this axis are shown in Appendix 2. The second, much weaker, axis was 



 

28 
 

also highly correlated with ANC. The possibility of strong explanatory variables being correlated 
with more than one axis is relatively common in ordination. By analogy, in a linear regression, 
we would expect to model variables that are strongly correlated with multiple axes using squared 
or higher terms. Because the strong variables dominate multiple axes, they hide weaker 
relationships that might otherwise show up on axes after the first axis. In this case, however, 
given the proportion of the original matrix extracted, there may be relatively little explanatory 
power in the remaining variables.  
 
Following up on this first ordination, we removed Lake Monroe and Saddle Lake from the 
analysis, to see if removing their lengthening effect on the first axis would yield a secondary axis 
with different correlations. The result was a first ordination axis with a strong correlation with 
ANC (τ = 0.679) and with total N (τ = 0.539) that extracted 71% of the original matrix. In the 
overall dataset, ANC and total N were moderately correlated (rs = 0.395). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.  First Bray-Curtis axis scores (top) and regression of axis-1 scores with acid-
neutralizing capacity (ANC; bottom). The correlation coefficients are shown in an inset. Symbol 
size in the top graph is related to fit; small symbols indicate good fit to the axis.   
 
 
 

Lake Monroe and 
Saddle Lake 
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To investigate effects from other variables, we removed ANC from the explanatory variables. 
The next run had a first axis that extracted only 31.5% of the original matrix. Axis 1 was strongly 
correlated with sulfate and chloride (τ = 0.579 and 0.550). Strakis and South Chain Lakes were 
outliers (see Table 3), but the axis fit the remaining data cloud well. Because this ordination had 
so much less explanatory power than earlier ordinations, we did not pursue additional removal of 
variables. 
 
Acid-neutralizing capacity dominated the correlations of the first axis from the Bray-Curtis 
ordinations, even when the two lakes with unusually low values were eliminated. Nitrogen 
values were moderately strongly correlated with ANC, but when ANC was eliminated from the 
explanatory values, nitrogen did not dominate the resulting analysis, and no single axis 
dominated the resulting ordination.  
 
Nonmetric multidimensional ordination  
 
Ordination constrained by the landscape variables was less successful in describing the data than 
the unconstrained Bray-Curtis ordination. Forty-five lakes had landscape compositions that 
HYMAP-OWLS could quantify, and these were used for nonmetric multidimensional ordination. 
The full data set used water quality variables ANC, total P, total N, K, and Cl, SO4, and 
landscape variables total watershed area, proportion of commercial area, proportion of 
agricultural area, and proportion of grass/pasture area. 
 
The best ordination of the full data set used only a single axis, which had strong correlation with 
total N (τ = -0.624) and a weaker correlation with total P (τ = -0.349). Cedar Lake, with an 
extremely high N value, was at the low end of the axis (the correlation was negative, so the low 
end corresponds to high N values; Figure 12). However, the correlations with the landcover 
variables were quite low (-0.188 for proportion of commercial area and -0.143 for proportion of 
grass and pasture; neither value was statistically significant). In addition, the overall variability 
explained by the model was only 9%. We experimented with modifications of the NMS 
ordination, but the constraint that water quality axes must be meaningful in the space of the 
landscape variables seemed unproductive overall. 
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Figure 12. First axis from nonmetric multidimensional ordination (top) and regression with total 
N (bottom). The correlation coefficients are shown in an inset. Symbol size in the top graph is 
related to fit; small symbols indicate good fit to the axis. 
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DISCUSSION 
 
Overview of Patterns in Results 
 
Our results demonstrated many commonly observed patterns among water-quality variables, and 
between water-quality and land-cover variables. Not surprisingly, patterns related to agricultural 
run-off dominated several kinds of analyses and many locations around the state; Indiana lakes 
are denser in the unglaciated northern portions of the state, but lakes and agriculture occur 
throughout the state. Lakes showing signs of industrial pollution were less common than lakes 
showing agricultural pollution. Other findings were related to geological and watershed 
differences in the state. As indicated in methods, some of the variables measured during 
sampling were unavailable for analysis here. Data external to this study, related to water quality, 
particularly local precipitation information and lake management practices that undoubtedly help 
to explain some water-quality patterns also were not available for this analysis.  
 
Extreme Data 
 
The frequency distribution plots for the sample parameters illustrate the central tendency of the 
results. While this is useful in characterizing a population of lakes, examining the instances of 
extreme values can provide insight into specific lakes. 
 
Three lakes (Cedar, Fish and Whitewater) had pH values above 9.0. In biologically productive 
lakes, the photosynthetic demand of algae for CO2 (a weak acid) drives pH to the alkaline side of 
neutrality (Wetzel 2001). The NLA data show this relationship (Figure 3) where pH increases as 
the chlorophyll a concentration increases. 
 
Cedar Lake, one of the more eutrophic lakes in Indiana, had extreme values on the high end of 
the turbidity, total phosphorus and chlorophyll a distributions, all characteristic of 
eutrophication. Versailles Lake had high levels of turbidity and total phosphorus but turbidity in 
this lake is more likely due to watershed soil erosion rather than due to algal production. 
 
Strakis Lake had the highest number of extreme values for measured parameters: conductivity, 
ammonia, chloride, sulfate, sodium and potassium. This lake lies in a former limestone quarry 
and is also near a landfill and agricultural land, all of which likely contribute to its high ionic 
content. Hert Lake fills a coal surface mine end-cut and had extreme values for conductivity, 
sulfate and magnesium, all of which are characteristic of mine spoils. 
 
Rock Lake also had extreme values in multiple parameters: acid-neutralizing capacity (ANC), 
total organic carbon (TOC) and dissolved organic carbon (DOC). None of these parameters are 
routinely measured in the Indiana Clean Lakes Program or in the Lake and River Enhancement 
(LARE) Program.  A 2008 LARE study of Rock Lake (Richardson et al. 2009) concluded that 
the lake was well-oxygenated and mesotrophic, with high epilimnetic total phosphorus (128 
µg/L) and chlorophyll a concentrations (57.8 µg/L). No findings from that study explain why the 
lake had extreme values in ANC, TOC, and DOC in the present NLA Study. 
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Olin Lake had the highest nitrate concentration (>1.5 mg/L) of all the NLA lakes sampled in 
Indiana. Indiana Clean Lake Program data show that for four assessments between 1993 and 
2008, Olin Lake had a mean epilimnetic nitrate concentration of 1.208 mg/L.  The NLA 
concentration is consistent with the CLP data. Olin Lake is surrounded by wetlands and has no 
homes along its shore. Its watershed drains primarily agricultural land but 87% of Olin Lake’s 
watershed drains through Martin Lake, which would act as a settling basin (Pranckus et al. 
2009). Martin Lake’s epilimnetic nitrate concentration in a 2008 LARE study was 0.928 mg/L.  
We have no definitive explanation for Olin Lake’s high nitrate concentration. 
 
Comparison to CLP Data 
 
The population of 51 NLA lakes sampled in Indiana had lower mean conductivity, total 
phosphorus, ammonium, and nitrate, lower TSI scores (Figure 4), and higher mean chlorophyll a 
than did the population of 370-380 lakes sampled between 2000 and 2005 by the  Indiana Clean 
Lakes Program (CLP) (Table 4). The NLA data also categorized a higher percentage of lakes as 
oligotrophic (33%) using Carlson’s TP TSI than did the same analysis of the CLP lake data 
(0%), and a lower proportion of eutrophic and hypereutrophic lakes when compared to the CLP 
data (Figure 7). These differences could be due to differences in lake selection, in sampling or 
analytical techniques, or in weather influencing the lakes’ condition.  
 
The CLP samples public lakes throughout Indiana that have boat launches. No probabilistic 
sampling design is used to select CLP lakes but rather, all accessible public lakes are sampled on 
a rotating schedule. The NLA draw included private and public lakes so the two sample 
populations are not exactly equivalent.   
 
The differences between the two populations of lakes suggests that private lakes may have lower 
trophic states and mean values for conductivity, total phosphorus, ammonium and nitrate 
concentrations and thus their inclusion in the NLA may have driven down the means for these 
parameters.  The lower means for total phosphorus (26.3 vs. 51.1 µg/L) and for nitrate (0.087 vs. 
0.416 mg/L) are particularly striking in the NLA lakes.  We investigated the possibility that 
ownership (private vs. public) might be related to water quality, but found no statistical evidence 
to support such a link. 
 
Another factor that could cause the lower concentrations of TP and nitrate in the NLA samples is 
the long sample holding time prior to analysis.  Many NLA samples, particularly TP and nitrate, 
had holding time alerts attached to the results to inform users that sample holding times were 
exceeded.  When holding times are exceeded, the accuracy of the data could be compromised.  In 
particular, phosphorus can be adsorbed onto the low-density polyethylene (LDPE) cubitainers 
used in the NLA study and nitrate can be lost through denitrification, a microbially mediated 
reaction whereby nitrate is reduced to molecular nitrogen (N2). That analytical problems affected 
the results is suggested in the nitrate analyses where the nitrate + nitrate concentrations are lower 
than those of nitrate alone. 
 
Precipitation during the 2007 NLA field sampling period was generally lower than during the 
years that the CLP data were sampled. Precipitation during the summer of 2007 was lower than 
summer precipitation in 2002, 2003, and 2004, and similar to patterns in 2000, 2001 and 2005 
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(Figure 6). Our observational data on Indiana lakes suggests that, for lakes with disturbed 
watersheds, drought results in less watershed runoff and better lake quality. However, we have 
no long-term climate and lake-quality data to evaluate statistically.  
 
Correlation Analyses 
 
The results of the correlational analyses showed that lake depth was strongly correlated with lake 
area and suggested an inverse relationship with total phosphorus, % forested area, and latitude, 
and suggested a positive relationship with % agricultural area. That deep lakes tend to have 
larger surface areas is not surprising. Glacial lakes in Indiana tend to be deeper than reservoir 
and the glacial lakes occur in the northern third of the state where forests and wetlands have been 
largely converted to agricultural land. Deep lakes also have more volume, which allows for more 
dilution of nutrients such as phosphorus. In an analysis of CLP data collected between 1994 and 
1998, lake depth was inversely proportional to total Kjeldahl nitrogen, total phosphorus, and 
chlorophyll a with p < 0.001 (Jones and Barnes 2005) . 
 
Our results also showed that summary variables associated with algal blooms – turbidity, water 
color, chlorophyll a – were generally highly correlated with the limiting nutrient variables C, N, 
and P.  Phosphorus is most often the limiting nutrient in Indiana lakes and eutrophication has 
been associated with high concentrations of nitrogen and phosphorus (Montgrain and Jones, 
2009).  Indiana’s eutrophic lakes also tend to have lower transparency due to increased turbidity 
caused by excessive algal densities and suspended sediments. 
 
In the landscape analysis, most of the correlations between landcover and water quality variables 
were of lesser significance. Among the stronger correlations were sodium and chloride with 
commercial and high-density landcovers. The use of road salt during winter months to melt snow 
and ice has been associated with increased sodium and chloride concentrations in surface waters 
(Sassan and Kahl 2007). With greater density of roads and traffic in urbanized areas, it is not 
surprising that sodium and chloride concentrations in urbanized areas were found to be higher. 
 
Agricultural landcover was positively correlated with DOC, total N and potassium but not with 
TOC or total phosphorus.  While all of these nutrients are associated with agriculture and soil 
erosion, loss rates depend upon cropping practice, soil type, topography, and other variables.  A 
recent study of nutrient losses from row-crop agriculture in northern Indiana showed a stronger 
relationship between nitrogen losses and land use class (r2 = 0.56 - 0.82; p < 0.05) than with total 
phosphorus (r2 = 0.42; p < 0.05) (Smith et al. 2008). 
 
Multivariate Analysis 
 
Ordination results revealed that acid neutralizing capacity is a major source of variability among 
Indiana lakes. Similarly, in the results of the cluster analysis, cluster 1, the most significant 
cluster, was associated with high gran acid-neutralizing capacity.  Lakes within cluster 1 were 
primarily in the northern part of the state and this coincides with the part of Indiana affected by 
the most recent period of glaciation.  The bedrock underlying the Northern Lake and Moraine 
Region is composed of siltstone, limestone and shale.  The land surface is covered with thick 
deposits of glacial till composed of a diverse mix of sediments (Fenelon and Bobay 1994). The 



 

34 
 

glacial till is layered with crushed calcium carbonate, a primary source of anions responsible for 
acid-neutralizing capacity. In fact, the amount of leaching of this calcium carbonate has been 
used to date the outwash sediments according to J. Robert Dodd (pers. comm. 2010). 
 
Cluster 2 generally includes lakes in Central Indiana and is associated with high total nitrogen 
and intermediate gran-acid-neutralizing capacity.  The predominant land use in the Central 
Indiana Corn Belt is row-crop agriculture, especially corn, which depends upon significant 
nitrogen fertilization. 
 
Cluster analysis of land cover variables produced four clusters. Cluster 3 was most easily 
described, having high forest cover and low ANC, P, N, and K.  These results are consistent with 
the low P, N and K losses associated with forest land cover. 
  
Sampling Considerations for Following up on Patterns Observed in this Study 
 
Acid-neutralizing capacity 
 
Acid-neutralizing capacity, which defined the primary axis of ordination results, is related to soil 
chemistry. In Indiana, major regional variation in soil chemistry is linked to bedrock 
characteristics and glacial history. The state’s major watersheds cross, rather than define, these 
regions. Omernik’s ecoregions (1987) coincide well with some of the regions – the karst-rich 
south-central and southeast areas, the glacial lakes of the northeast, and the deep soils of the till 
plain. However, lakes are not evenly divided among the ecoregions, and the NLA sampling 
regime within Indiana did not involve sufficient lakes to provide good coverage in the areas with 
lower lake density. As a result, effective statistical comparison of ecoregions was prevented by 
small sample sizes.  
 
In view of the importance of soil- and bedrock-related characteristics, future studies might use 
stratified sampling to ensure a minimum sample size in the strata of interest. The Omernik 
ecoregions or Homoya’s natural regions of Indiana (Homoya 1985) provide divisions based in 
part on topographic and glacial characteristics that may be relevant. Similarly, soil maps that 
provide information on pH and alkalinity could be used to characterize soils in the immediate 
vicinity of lakes. Understanding soil variation within ecoregions may best explain some of the 
similarities among lakes from disparate parts of the state. 
 
Nutrient relationships 
 
Nutrient relationships were apparent in correlational analyses and cluster analysis, but did not 
define strong axes during ordination. Many nutrient variables are too confounded by variation in 
algal growth cycles at a variety of scales to be easily measured by one or two visits in a season. 
Daily variation from photosynthetic activity, seasonal variation in algal growth, and variation 
related to storm-caused changes in run-off and sediment all combine to make it difficult to 
properly characterize the nutrient status of lakes. Unfortunately, storm events need not be large 
to create spikes in run-off, and few lakes have sufficiently local weather stations to accurately 
record weather immediately preceding sampling. Possibly, discussion with local residents could 
be used for a relatively informal measure such as occurrence of strong rains in the week 
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preceding sampling or onsite evidence of elevated turbidity, etc. Variables chosen for ordination 
and other multivariate analyses should be those least affected by flood pulses – total N, rather 
than individual forms of N, and in preference to total P, which is affected by sediment inflow.  
Droughts, more likely under future climate change, can result in reduced nutrient and sediment 
loading in those lakes dominated by watershed runoff.  
 
Landscape analysis 
 
The HYMAP-OWLS analytical tool used to provide landscape information in this study 
summarizes land cover within a single watershed. However, due to marl mining in the late 1800s 
and early 1900s (Blatchley and Ashley 1900), lake level manipulations by farmers in the early 
1900s, the Indiana Drainage Code of 1965, and the creation of artificial channels to connect 
residences to lakes, many Indiana lakes are now chained together by channels. The importance of 
canal inflow in determining water quality obviously varies with flow volume and difference in 
water quality among lakes in such a chain. As a result, landscape impacts are smeared, with 
upstream basins potentially affecting downstream lakes. A more sophisticated landscape analysis 
would reflect the total watershed area contributing to lakes, factoring in the relative importance 
of upper basins to the downstream waters. Most between-lake connecting channels are not 
instrumented, and flow may be a function not only of weather but also of management (e.g., by 
water-control structures), thus, determining when to consider upstream watersheds is difficult, 
but, where possible, visual inspection may provide at least basic guidance.  
 
During this study, landscape analysis of 6 lakes could not be completed due to extreme lack of 
topography in the surrounding landscape, which prevented the program from delineating a 
relevant watershed. In such landscapes, ditches may more strongly affect lake water quality than 
overland flow. In less hydrologically manipulated landscapes, sheet flow may be important, but 
in the primary agricultural landscapes, drainage ditches minimize such flow and substitute for it.   
 
Any analysis of landscape features affecting lakes in agricultural regions must account for 
subsurface drainage tiles.  However, the location of these tiles is not well-document and even 
fewer have been evaluated regarding water quality.  In one comprehensive study of the Leary-
Weber Ditch agricultural watershed west of Indianapolis (Baker et al. 2006), drainage tiles 
accounted for substantial nutrient loadings to the receiving stream.  
 
Limitations of statistics and sampling 
 
Statistical analysis is predicated on the use of a finite sample to characterize an infinite universe. 
Indiana lakes are numerous, and as a single group, more than sufficiently numerous to 
adequately approximate infinity. However, some subsets are distinctly less numerous. Large 
reservoirs and lakes strongly affected by certain kinds of industrial pollutants represent two such 
subsets. Large reservoirs are of sufficient interest that lake-by-lake individual description may be 
most useful. Water quality of any large single reservoir may be a result of such a large watershed 
and of so many separate inputs that the reservoirs do not fit typologies or statistical methods 
designed to describe or categorize smaller lakes. Some highly polluted lakes (e.g., Strakis) are 
sufficiently idiosyncratic that they constitute outliers for most kind of analyses, and potentially 
confound analysis that seeks to categorize or ordinate less exceptional lakes.  
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Where obviously finite and distinct subgroups can be identified, separate analyses, or lake-by-
lake description will likely be more appropriate than inclusion in a larger analysis. Random 
sampling that seeks to characterize more usual lakes should probably avoid lakes in these 
subgroups. In studying a collection as heterogeneous as Indiana lakes, a single, unstratified 
sampling scheme is unlikely to satisfy all analytical aims. When possible, research questions 
should be identified that can guide the sampling scheme or schemes, or, at least, subsets of lakes 
such as those described above might be identified and characterized so that they can be excluded 
from a simple sampling scheme.   
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Appendix 1: 
 
Data flags for all flagged variables used in analysis. Data flags indicate conditions of potential 
concern, usually with regard to handling time. 
 
 

Flag for pH_Lab 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  40 78.4 78.4 78.4 

H5 2 3.9 3.9 82.4 

H6 1 2.0 2.0 84.3 

H7 1 2.0 2.0 86.3 

H8 7 13.7 13.7 100.0 

Total 51 100.0 100.0  

 
 

Flag for Conductivity 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  46 90.2 90.2 90.2 

H10 1 2.0 2.0 92.2 

H11 1 2.0 2.0 94.1 

H8 3 5.9 5.9 100.0 

Total 51 100.0 100.0  

 
 

Flag for Gran Acid-Neutralizing Capacity 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  44 86.3 86.3 86.3 

H8 7 13.7 13.7 100.0 

Total 51 100.0 100.0  
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Flag for Turbidity 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  31 60.8 60.8 60.8 

< RL (2) 17 33.3 33.3 94.1 

H4 2 3.9 3.9 98.0 

H4; < RL (2) 1 2.0 2.0 100.0 

Total 51 100.0 100.0  

  
 

Flag for Total Organic Carbon 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  10 19.6 19.6 19.6 

H15 9 17.6 17.6 37.3 

H16 5 9.8 9.8 47.1 

H17 4 7.8 7.8 54.9 

H18 4 7.8 7.8 62.7 

H19 5 9.8 9.8 72.5 

H20 5 9.8 9.8 82.4 

H21 3 5.9 5.9 88.2 

H23 1 2.0 2.0 90.2 

H244 1 2.0 2.0 92.2 

H26 1 2.0 2.0 94.1 

H71 2 3.9 3.9 98.0 

H72 1 2.0 2.0 100.0 

Total 51 100.0 100.0  
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Flag for Dissolved Organic Carbon 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  46 90.2 90.2 90.2 

H15 2 3.9 3.9 94.1 

H153 1 2.0 2.0 96.1 

H16 2 3.9 3.9 100.0 

Total 51 100.0 100.0  

 
Flag for Total Phosphorus 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  7 13.7 13.7 13.7 

H29 4 7.8 7.8 21.6 

H30 3 5.9 5.9 27.5 

H34 2 3.9 3.9 31.4 

H35 4 7.8 7.8 39.2 

H36 7 13.7 13.7 52.9 

H37 3 5.9 5.9 58.8 

H38 2 3.9 3.9 62.7 

H39 1 2.0 2.0 64.7 

H40 1 2.0 2.0 66.7 

H44 2 3.9 3.9 70.6 

H45 2 3.9 3.9 74.5 

H46 2 3.9 3.9 78.4 

H47 2 3.9 3.9 82.4 

H47; < RL (4) 1 2.0 2.0 84.3 

H85 2 3.9 3.9 88.2 

H86; < RL (4) 1 2.0 2.0 90.2 

H87 1 2.0 2.0 92.2 

H90 2 3.9 3.9 96.1 
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H91 2 3.9 3.9 100.0 

Total 51 100.0 100.0  

 
Flag for TN 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  7 13.7 13.7 13.7 

H29 4 7.8 7.8 21.6 

H30 3 5.9 5.9 27.5 

H34 2 3.9 3.9 31.4 

H35 4 7.8 7.8 39.2 

H36 6 11.8 11.8 51.0 

H37 3 5.9 5.9 56.9 

H38 2 3.9 3.9 60.8 

H39 1 2.0 2.0 62.7 

H40 1 2.0 2.0 64.7 

H44 2 3.9 3.9 68.6 

H45 2 3.9 3.9 72.5 

H46 2 3.9 3.9 76.5 

H47 2 3.9 3.9 80.4 

H84 1 2.0 2.0 82.4 

H85 2 3.9 3.9 86.3 

H86 1 2.0 2.0 88.2 

H87 1 2.0 2.0 90.2 

H90 2 3.9 3.9 94.1 

H91 2 3.9 3.9 98.0 

H95 1 2.0 2.0 100.0 

Total 51 100.0 100.0  
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Flag for NH4 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  38 74.5 74.5 74.5 

< RL (0.02) 8 15.7 15.7 90.2 

H34 1 2.0 2.0 92.2 

H35 1 2.0 2.0 94.1 

H35; < RL (0.02) 1 2.0 2.0 96.1 

H36 1 2.0 2.0 98.0 

H37 1 2.0 2.0 100.0 

Total 51 100.0 100.0  
 

Flag for N03_N02 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  46 90.2 90.2 90.2 

H8 4 7.8 7.8 98.0 

H9 1 2.0 2.0 100.0 

Total 51 100.0 100.0  

 
Flag for NO3 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  2 3.9 3.9 3.9 

H101 1 2.0 2.0 5.9 

H104 1 2.0 2.0 7.8 

H105 1 2.0 2.0 9.8 

H107 2 3.9 3.9 13.7 

H108 1 2.0 2.0 15.7 

H109 1 2.0 2.0 17.6 

H110 1 2.0 2.0 19.6 

H111 ; < RL (0.0) 1 2.0 2.0 21.6 
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H112 1 2.0 2.0 23.5 

H113 1 2.0 2.0 25.5 

H119 1 2.0 2.0 27.5 

H119 ; < RL (0.0) 1 2.0 2.0 29.4 

H126 2 3.9 3.9 33.3 

H131 2 3.9 3.9 37.3 

H132 2 3.9 3.9 41.2 

H140 1 2.0 2.0 43.1 

H140 ; < RL (0.0) 1 2.0 2.0 45.1 

H141 ; < RL (0.0) 1 2.0 2.0 47.1 

H142 2 3.9 3.9 51.0 

H150 1 2.0 2.0 52.9 

H151 2 3.9 3.9 56.9 

H152 2 3.9 3.9 60.8 

H153 4 7.8 7.8 68.6 

H154 2 3.9 3.9 72.5 

H155 1 2.0 2.0 74.5 

H161 1 2.0 2.0 76.5 

H165 1 2.0 2.0 78.4 

H165 ; < RL (0.0) 2 3.9 3.9 82.4 

H94 ; < RL (0.02) 2 3.9 3.9 86.3 

H96 ; < RL (0.02) 1 2.0 2.0 88.2 

H97 1 2.0 2.0 90.2 

H97 ; < RL (0.02) 1 2.0 2.0 92.2 

H99 2 3.9 3.9 96.1 

H99 ; < RL (0.02) 2 3.9 3.9 100.0 

Total 51 100.0 100.0  
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Flag for CL 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  1 2.0 2.0 2.0 

H100 3 5.9 5.9 7.8 

H101 1 2.0 2.0 9.8 

H102 2 3.9 3.9 13.7 

H104 2 3.9 3.9 17.6 

H106 1 2.0 2.0 19.6 

H107 3 5.9 5.9 25.5 

H109 1 2.0 2.0 27.5 

H110 1 2.0 2.0 29.4 

H111 1 2.0 2.0 31.4 

H112 2 3.9 3.9 35.3 

H113 2 3.9 3.9 39.2 

H119 1 2.0 2.0 41.2 

H126 1 2.0 2.0 43.1 

H129 2 3.9 3.9 47.1 

H131 2 3.9 3.9 51.0 

H133 2 3.9 3.9 54.9 

H140 1 2.0 2.0 56.9 

H141 1 2.0 2.0 58.8 

H142 2 3.9 3.9 62.7 

H151 2 3.9 3.9 66.7 

H152 1 2.0 2.0 68.6 

H153 3 5.9 5.9 74.5 

H154 1 2.0 2.0 76.5 

H155 4 7.8 7.8 84.3 

H156 1 2.0 2.0 86.3 

H165 1 2.0 2.0 88.2 

H168 1 2.0 2.0 90.2 
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H169 2 3.9 3.9 94.1 

H170 1 2.0 2.0 96.1 

H97 2 3.9 3.9 100.0 

Total 51 100.0 100.0  
 
 

Flag for SIO2 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  46 90.2 90.2 90.2 

H8 4 7.8 7.8 98.0 

H9 1 2.0 2.0 100.0 

Total 51 100.0 100.0  

 
 

Flag for Na 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  1 2.0 2.0 2.0 

H181 1 2.0 2.0 3.9 

H182 2 3.9 3.9 7.8 

H183 2 3.9 3.9 11.8 

H280 1 2.0 2.0 13.7 

H281 2 3.9 3.9 17.6 

H282 4 7.8 7.8 25.5 

H283 1 2.0 2.0 27.5 

H286 4 7.8 7.8 35.3 

H287 7 13.7 13.7 49.0 

H288 3 5.9 5.9 54.9 

H289 3 5.9 5.9 60.8 

H290 1 2.0 2.0 62.7 

H291 2 3.9 3.9 66.7 
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H292 1 2.0 2.0 68.6 

H293 4 7.8 7.8 76.5 

H295 1 2.0 2.0 78.4 

H296 2 3.9 3.9 82.4 

H297 3 5.9 5.9 88.2 

H298 3 5.9 5.9 94.1 

H302 1 2.0 2.0 96.1 

H315 1 2.0 2.0 98.0 

H323 1 2.0 2.0 100.0 

Total 51 100.0 100.0  
 

Flag for SO4 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  2 3.9 3.9 3.9 

H100 2 3.9 3.9 7.8 

H101 1 2.0 2.0 9.8 

H102 1 2.0 2.0 11.8 

H104 1 2.0 2.0 13.7 

H106 1 2.0 2.0 15.7 

H107 4 7.8 7.8 23.5 

H108 1 2.0 2.0 25.5 

H109 1 2.0 2.0 27.5 

H110 1 2.0 2.0 29.4 

H111 1 2.0 2.0 31.4 

H112 1 2.0 2.0 33.3 

H113 1 2.0 2.0 35.3 

H119 2 3.9 3.9 39.2 

H126 2 3.9 3.9 43.1 

H131 2 3.9 3.9 47.1 

H132 2 3.9 3.9 51.0 



 

48 
 

H140 2 3.9 3.9 54.9 

H142 1 2.0 2.0 56.9 

H151 2 3.9 3.9 60.8 

H152 2 3.9 3.9 64.7 

H153 3 5.9 5.9 70.6 

H154 2 3.9 3.9 74.5 

H155 2 3.9 3.9 78.4 

H156 1 2.0 2.0 80.4 

H157 1 2.0 2.0 82.4 

H161 1 2.0 2.0 84.3 

H165 3 5.9 5.9 90.2 

H169 1 2.0 2.0 92.2 

H94 1 2.0 2.0 94.1 

H96 1 2.0 2.0 96.1 

H97 1 2.0 2.0 98.0 

H99 1 2.0 2.0 100.0 

Total 51 100.0 100.0  
 

Flag for Ca 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  1 2.0 2.0 2.0 

H181 1 2.0 2.0 3.9 

H182 2 3.9 3.9 7.8 

H183 2 3.9 3.9 11.8 

H280 1 2.0 2.0 13.7 

H281 2 3.9 3.9 17.6 

H282 4 7.8 7.8 25.5 

H283 1 2.0 2.0 27.5 

H286 4 7.8 7.8 35.3 

H287 7 13.7 13.7 49.0 
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H288 3 5.9 5.9 54.9 

H289 4 7.8 7.8 62.7 

H290 1 2.0 2.0 64.7 

H291 2 3.9 3.9 68.6 

H292 1 2.0 2.0 70.6 

H293 5 9.8 9.8 80.4 

H295 1 2.0 2.0 82.4 

H296 2 3.9 3.9 86.3 

H297 3 5.9 5.9 92.2 

H298 3 5.9 5.9 98.0 

H302 1 2.0 2.0 100.0 

Total 51 100.0 100.0  
 

Flag for Mg 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  1 2.0 2.0 2.0 

H181 1 2.0 2.0 3.9 

H182 2 3.9 3.9 7.8 

H183 2 3.9 3.9 11.8 

H280 1 2.0 2.0 13.7 

H281 2 3.9 3.9 17.6 

H282 4 7.8 7.8 25.5 

H283 1 2.0 2.0 27.5 

H286 4 7.8 7.8 35.3 

H287 7 13.7 13.7 49.0 

H288 3 5.9 5.9 54.9 

H289 3 5.9 5.9 60.8 

H290 1 2.0 2.0 62.7 

H291 2 3.9 3.9 66.7 

H292 1 2.0 2.0 68.6 
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H293 5 9.8 9.8 78.4 

H295 1 2.0 2.0 80.4 

H296 2 3.9 3.9 84.3 

H297 3 5.9 5.9 90.2 

H298 3 5.9 5.9 96.1 

H302 1 2.0 2.0 98.0 

H315 1 2.0 2.0 100.0 

Total 51 100.0 100.0  
 

Flag for K 

 
Frequency Percent Valid Percent 

Cumulative 
Percent 

Valid  1 2.0 2.0 2.0 

H181 1 2.0 2.0 3.9 

H182 2 3.9 3.9 7.8 

H183 2 3.9 3.9 11.8 

H280 1 2.0 2.0 13.7 

H281 2 3.9 3.9 17.6 

H282 4 7.8 7.8 25.5 

H283 1 2.0 2.0 27.5 

H286 4 7.8 7.8 35.3 

H287 7 13.7 13.7 49.0 

H288 3 5.9 5.9 54.9 

H289 4 7.8 7.8 62.7 

H290 1 2.0 2.0 64.7 

H291 2 3.9 3.9 68.6 

H292 1 2.0 2.0 70.6 

H293 4 7.8 7.8 78.4 

H295 1 2.0 2.0 80.4 

H296 2 3.9 3.9 84.3 

H297 3 5.9 5.9 90.2 
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H298 3 5.9 5.9 96.1 

H302 1 2.0 2.0 98.0 

H323 1 2.0 2.0 100.0 

Total 51 100.0 100.0  
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Appendix 2: 
 
Lake scores on Axis 1 of a Bray-Curtis Ordination using acid-neutralizing capacity, total 
phosphorus, total nitrogen, Cl, SO4, and K as lake characteristics. The axis was highly negatively 
correlated with acid-neutralizing capacity and moderately highly negatively correlated with total 
nitrogen.  
 
Score on Axis 1 Lake ID Lake Name 

-0.051 NLA06608-1867 Rock Lake 
-0.035 NLA06608-IN:646 Olin Lake 
-0.006 NLA06608-2644 Versailles Lake 
-0.005 NLA06608-2987 South Chain Lake 

0 NLA06608-0811 Johnson Lake 
0.002 NLA06608-0555 Little Otter 
0.005 NLA06608-2523 Barbara Lake 
0.011 NLA06608-0139 Palestine Lake 
0.026 NLA06608-2779 Big Barbee Lake 
0.029 NLA06608-2267 Tamarack Lake 
0.032 NLA06608-0660 Strakis Lake 
0.037 NLA06608-0043 Messick Lake 
0.037 NLA06608-0731 Harper Lake 
0.039 NLA06608-1243 Waldron Lake 
0.04 NLA06608-0219 Skinner Lake 
0.043 NLA06608-3147 Bruce Lake 
0.045 NLA06608-1579 James Lake 
0.049 NLA06608-0235 Tippecanoe Lake 
0.05 NLA06608-0987 Fish Lake 
0.053 NLA06608-0299 Round Lake 
0.06 NLA06608-0491 Mud Lake 
0.061 NLA06608-1835 Round Lake 
0.069 NLA06608-2507 Morse Reservoir 
0.076 NLA06608-2891 Crystal Lake 
0.077 NLA06608-0971 Prairie Creek 
0.077 NLA06608-2155 Fox Lake 
0.08 NLA06608-1556 Hert Lake 
0.081 NLA06608-2219 Lake Latonka 
0.084 NLA06608-1195 Koontz Lake 
0.084 NLA06608-2283 Big Chapman 
0.086 NLA06608-1355 Lake Maxinkuckee 
0.09 NLA06608-1755 Robinson Lake 
0.11 NLA06608-1684 Heritage Lake 
0.111 NLA06608-1199 Whitewater Lake 
0.112 NLA06608-1131 Crooked Lake 
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0.123 NLA06608-0091 Cedar Lake 
0.129 NLA06608-3035 Blackman Lake 
0.133 NLA06608-0587 Bass Lake 
0.142 NLA06608-1163 Fletcher Lake 

0.207 NLA06608-1227 
Kokomo Reservoir 
No. 1 

0.213 NLA06608-1492 Bischoff Reservoir 
0.217 NLA06608-1499 Round Lake 
0.219 NLA06608-0107 Cheeseboro Lake 
0.263 NLA06608-0148 Princes East 
0.316 NLA06608-0724 Tipton Lakes 
0.342 NLA06608-2708 Whippoorwill Lake 
0.378 NLA06608-1172 Woodland Lake 
0.43 NLA06608-2196 Lazy Lake 
0.453 NLA06608-2916 Yellow Banks 
0.713 NLA06608-1908 Saddle Lake 
0.736 NLA06608-0212 Monroe Lake 

 
 


	NLA_cover_small_rev.pdf
	NLA FINAL Report

